A comparison of 3D shape retrieval methods based on a large-scale benchmark supporting multimodal queries
نویسندگان
چکیده
Large-scale 3D shape retrieval has become an important research direction in content-based 3D shape retrieval. To promote this research area, two Shape Retrieval Contest (SHREC) tracks on large scale comprehensive and sketch-based 3D model retrieval have been organized by us in 2014. Both tracks were based on a unified large-scale benchmark that supports multimodal queries (3D models and sketches). This benchmark contains 13,680 sketches and 8,987 3D models, divided into 171 distinct classes. It was compiled to be a superset of existing benchmarks and presents a new challenge to retrieval methods as it comprises generic models as well as domain-specific model types. Twelve and six distinct 3D shape retrieval methods have competed with each other in these two contests, respectively. To measure and compare the performance of the participating and other promising Query-byModel or Query-by-Sketch 3D shape retrieval methods and to solicit state-of-the-art approaches, we perform a more comprehensive comparison of twenty-six (eighteen originally participating algorithms and eight additional state-of-the-art or new) retrieval methods by evaluating them on the common benchmark. The benchmark, results, and evaluation tools are publicly available at our websites [1, 2].
منابع مشابه
SHREC'10 Track: Large Scale Retrieval
This paper is a report on the 3D Shape Retrieval Constest 2010 (SHREC’10) track on large scale retrieval. This benchmark allows evaluating how wel retrieval algorithms scale up to large collections of 3D models. The task was to perform 40 queries in a dataset of 10000 shapes. We describe the methods used and discuss the results and signifiance analysis.
متن کاملSHREC ’ 16 Track Large - Scale 3 D Shape Retrieval from ShapeNet Core 55
With the advent of commodity 3D capturing devices and better 3D modeling tools, 3D shape content is becoming increasingly prevalent. Therefore, the need for shape retrieval algorithms to handle large-scale shape repositories is more and more important. This track aims to provide a benchmark to evaluate large-scale shape retrieval based on the ShapeNet dataset. We use ShapeNet Core55, which prov...
متن کاملSHREC'13 Track: Large Scale Sketch-Based 3D Shape Retrieval
Sketch-based 3D shape retrieval has become an important research topic in content-based 3D object retrieval. The aim of this track is to measure and compare the performance of sketch-based 3D shape retrieval methods based on a large scale hand-drawn sketch query dataset which has 7200 sketches and a generic 3D model target dataset containing 1258 3D models. The sketches and models are divided i...
متن کاملSHREC'12 Track: Sketch-Based 3D Shape Retrieval
Sketch-based 3D shape retrieval has become an important research topic in content-based 3D object retrieval. The aim of this track is to measure and compare the performance of sketch-based 3D shape retrieval methods implemented by different participants over the world. The track is based on a new sketch-based 3D shape benchmark, which contains two types of sketch queries and two versions of tar...
متن کاملFisher encoding of differential fast point feature histograms for partial 3D object retrieval
Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Vision and Image Understanding
دوره 131 شماره
صفحات -
تاریخ انتشار 2015